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Bias and Efficiency in Family-Based Gene-Characterization Studies:
Conditional, Prospective, Retrospective, and Joint Likelihoods
Peter Kraft and Duncan C. Thomas
Department of Preventive Medicine, University of Southern California, Los Angeles

We revisit the usual conditional likelihood for stratum-matched case-control studies and consider three alternatives
that may be more appropriate for family-based gene-characterization studies: First, the prospective likelihood, that
is, ; second, the retrospective likelihood, ; and third, the ascertainment-corrected joint likelihood,Pr (DFG, A) Pr (GFD)

. These likelihoods provide unbiased estimators of genetic relative risk parameters, as well as populationPr (D, GFA)
allele frequencies and baseline risks. The parameter estimates based on the retrospective likelihood remain unbiased
even when the ascertainment scheme cannot be modeled, as long as ascertainment only depends on families’
phenotypes. Despite the need to estimate additional parameters, the prospective, retrospective, and joint likelihoods
can lead to considerable gains in efficiency, relative to the conditional likelihood, when estimating genetic relative
risk. This is true if baseline risks and allele frequencies can be assumed to be homogeneous. In the presence of
heterogeneity, however, the parameter estimates assuming homogeneity can be seriously biased. We discuss the
extent of this problem and present a mixed models approach for providing consistent parameter estimates when
baseline risks and allele frequencies are heterogeneous. The efficiency gains of the mixed-model prospective, ret-
rospective, and joint likelihoods relative to the efficiency of conditional likelihood are small in the situations presented
here.

Introduction

Segregation and linkage analyses can give us some in-
formation on the penetrance of different genotypes.
However, since they do not involve measuring the pu-
tative causal gene(s), they can be very inefficient (Gau-
derman and Faucett 1997). In the future, as candidate
genes become quicker and cheaper to identify and mea-
sure, gene-characterization studies will play an impor-
tant role in measuring parameters such as penetrance.

Gene-characterization studies involve measuring the
properties of a given, observable gene as it relates to a
disease (or diseases) of interest. Typically, this means
parameters measuring the penetrance of different gen-
otypes and allele frequencies. Since it is possible—
although expensive and logistically difficult—to observe
the genotypes of all subjects in a study, gene-character-
ization studies have much in common with traditional
epidemiological studies which measure the association
of a disease with an observable covariate. Still, there
are problems and opportunities particular to gene-char-
acterization studies.
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The diseases of interest in gene-characterization stud-
ies are usually rare, as are the putative high-risk alleles.
This means traditional population-based case-control
and cohort studies are inefficient, since most subjects
will not have the exposure of interest. Some of the strat-
egies to deal with this problem involve only sampling
families with at least one case, or sampling heavily af-
fected families in an ad hoc manner. The analysis of
such data requires a correction for the sampling method,
or ascertainment.

Gene-characterization studies are also susceptible to
genetic confounding. Population controls are subject to
“population-stratification bias,” where allele frequen-
cies and penetrances vary between subpopulations
which are impossible to match on (Lander and Schork
1994; Witte et al. 1999). Sibling controls are immune
to population stratification bias when analyzed using a
standard stratum-matched conditional likelihood, but
they may be less efficient than population controls
(Witte et al. 1999).

The methods presented in this paper take advantage
of our ability to model the dependence of genotypes
within families when analyzing gene-characterization
studies. This can increase efficiency by making more
effective use of subjects on whom we have both trait
and genotype data and by use of subjects on whom we
only have trait data. As in segregation analysis, even
subjects who are not genotyped can contribute infor-
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mation about the relationship between the trait and the
gene being studied.

The study of breast cancer throughout the last decade
provides an example of the development from linkage
and segregation studies to gene-characterization studies.
Before BRCA1 had been cloned, investigators could
only use segregation and linkage analyses to estimate
penetrance in carriers of BRCA1 (e.g., Claus et al. 1991;
Easton et al. 1993, 1995). Once BRCA1 had been
cloned, investigators could use the actual, observed gen-
otypes of individuals in their analyses. For example,
Struewing et al. (1997) genotyped volunteers, regardless
of their disease status, and then compared the disease
status of relatives of carriers and noncarriers. Their
analysis did not actually make use of the medical history
of the genotyped volunteers. Gail et al. (1999) extended
this design to accommodate stratified sampling based
on the disease status of the probands and additional
genotype data on other relatives.

In this study, we examine the properties of several
methods of analyzing case-control data on sibships. The
design we consider differs from those in Struewing et
al. (1997) and Gail et al. (1999) in that it uses disease
status data on all subjects (where available) and restricts
sampled sibships to those with at least one case and one
control. These methods can be extended to larger ped-
igrees (Siegmund et al. 1999), but, for simplicity, we
restrict our attention to sibship-based designs. We as-
sume complete ascertainment, an assumption which
would hold if, for example, investigators were sampling
sibships with at least one case and one control at ran-
dom from a larger ongoing cohort study (Elston and
Bonney 1984). We also assume that the outcome of
interest is binary (present / absent). Age-at-onset models
are, of course, relevant for diseases such as cancer, but
are beyond the scope of this paper. We sketch extensions
of the likelihoods developed here which incorporate
age-at-onset models in the discussion.

In the first section, we present four likelihoods for
the analysis of case-control data on sibships: the con-
ditional, prospective, retrospective, and joint likeli-
hoods. The conditional likelihood is the usual likelihood
for stratum-matched data; the prospective likelihood is
based on modeling the risk of disease given genotypes;
the retrospective likelihood is based on modeling the
distribution of genotypes given the phenotypes (dis-
ease); and the joint likelihood is based on the joint prob-
ability of genotypes and phenotypes.

The conditional and retrospective likelihoods are “as-
certainment-assumption free”—that is, if the probabil-
ity of a family being ascertained depends only on the
family members’ phenotypes, then we do not have to
explicitly model how ascertainment depends on phe-
notypes. Because of this property, the retrospective like-
lihood can easily and correctly analyze designs which

restrict ascertainment to sibships with multiple cases or
to sibships with affected parents. The hope is that such
designs will increase efficiency, because multiple-case
families are more likely to carry the disease gene. The
retrospective likelihood is related to the “MOD score”
approach in linkage analysis, which has been widely
used because of its ability to correct for ascertainment
in an “assumption-free” manner (Easton et al. 1993;
Easton et al. 1995; Hodge and Elston 1994). We put
quotes around “assumption-free,” because it is impor-
tant to remember that the retrospective likelihood only
corrects for ascertainment if ascertainment does not de-
pend directly on genotypes or other covariates included
in the model (Siegmund et al. 1999). We return to this
restriction in the discussion.

In the second section, we examine the relative effi-
ciencies of conditional, prospective, retrospective, and
joint logistic likelihoods. In the third section, we ex-
amine the bias that results in the prospective, retro-
spective, and joint likelihoods when there is hetero-
geneity in baseline familial disease rates and allele fre-
quencies. In the fourth section, we present a mixed-
model approach which allows for unbiased parameter
estimation, even in the case of heterogeneity. We sum-
marize and compare the properties of the four likeli-
hoods in the Discussion section.

Likelihoods for Sibship-Based Case-Control Studies

Each of the four likelihoods presented below is, in some
sense, a conditional likelihood, since for each the con-
tribution for a single family can be written as

Pr (D,GFA) Pr (A, D, G)
=∗ ∗ ∗ ∗� Pr (D ,G FA) � Pr (A, D , G )C∗ ∗{D ,G }�C

Pr (AFD) Pr (DFG) Pr (G)
= . (1)∗ ∗ ∗ ∗� Pr (AFD ) Pr (D FG ) Pr (G )C

Here denotes the vector of phenotype information forD
the family members, is the vector of measured genes,G

is the event that the family was ascertained, and theA
sum in the denominator is over all events in some con-
ditioning set C ( etc. are dummy variables, whereas∗G

and are observed). For example, in the case of whatD G
we call the retrospective likelihood, C consists of all
combinations with equal to the observed∗ ∗ ∗{D , G } D
phenotypes. In other words, the sum in the denominator
is over all possible genotypes while holding fixed.D
Throughout the rest of this paper when we say “con-
ditional likelihood,” we are only referring to the usual
conditional likelihood for stratum-matched data, pre-
sented immediately below.

A basic principle of case-control methodology is that
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subject selection should directly depend only upon
potential subjects’ disease status, not on their covari-
ates. This is why the term simplifies toPr (AFD, G)

in the above likelihood. In this paper we as-Pr (AFD)
sume complete ascertainment, where ifPr (AFD) = 1

is in the ascertainment set (e.g., it has one case andD
one control), and 0 otherwise. Complete ascertainment
is often assumed, as a mathematical convenience, in
situations where it is difficult to verify, but again it is
worth noting that we can actually achieve complete as-
certainment if we are randomly sampling families who
meet entry requirements from an ongoing population-
based cohort study. The conditional and retrospective
likelihoods can accommodate other ascertainment
schemes which only depend upon subjects’ phenotypes
without modification; the prospective and joint likeli-
hoods require that the model for ascertainment be
changed appropriately.

As in most epidemiologic studies, we further assume
that subjects’ phenotypes are conditionally independent,
given their covariates, so that .Pr (DFG) = � Pr (DFG )i i i

In particular, this means we assume that the candidate
gene is not in linkage disequilibrium with another gene
related to disease. In a subsequent section, we consider
violations of the assumption of conditional independ-
ence—most notably, population stratification.

Throughout this study, we assume a simple main-
effect logistic model for the candidate gene. That is,

. Here is a coding oflogit [Pr (DFG)] = a � bZ(G) Z(G)
the genotype depending upon dominance assumptions.
For example, in the calculations we describe below, we
assumed a two-allele model: , ,Z(aa) = 0 Z(Aa) = d

, where , 1/2, 1 for recessive, additive,Z(AA) = 1 d = 0
and dominant models, respectively. There are other
models for , such as the log-linear modelPr (DFG)

, and these could be used inPr (DFG) = exp [a � bZ(G)]
(1) as well. We use the logistic model because it is the
most common and does not require constraints on the
parameters to ensure .Pr (DFG) � 1

Main effects for measured environmental factors and
gene-environment interactions can be added to the con-
ditional and prospective likelihoods without further as-
sumptions. They can be added to the other two likeli-
hoods as long as the genetic and environmental factors
are independent, that is, if .Pr (GFZ ) = Pr (G)env

The term in (1) is parameterized by q, the mu-Pr (G)
tant allele frequency. We will denote the penetrance in
carriers as and thef = exp (a � b)/ [1 � exp (a � b)]1

penetrance in noncarriers as .f = exp (a)/ [1 � exp (a)]0

Although, for simplicity, we mainly consider sibship
studies in this paper, these likelihoods can be extended
to include nuclear families and larger pedigrees. They
can also accommodate designs where some of the sub-
jects are not genotyped. For example, in a study of
nuclear families we may not be able to genotype the

parents. Then, the joint probability of the observed phe-
notypes and genotypes for a family simply becomes a
sum over unknown parental genotypes (Siegmund et al.
1999).

In this section and the next we assume that the base-
line rate and allele frequency are homogeneous, that is,
a and q do not vary between or within families. We
consider the case where these parameters are allowed
to vary between families in a subsequent section.

Conditional Likelihood

The usual conditional likelihood for matched case-
control studies conditions on the number of observed
cases in each matched set (family). The likelihood con-
tribution for a given family takes the following form:

F FL(b) = Pr (DFG, D )

[ ] [ ]� Pr D = 1FZ(G ) � Pr D = 0FZ(G )j�D j j j�D j j

=
[ ] [ ]� � Pr D = 1FZ(G ) � Pr D = 0FZ(G )S�C j�S j j j�S j j

[ ]� exp bZ(G )j�D j

= , (2)
[ ]� � exp bZ(G )S�C j�S j

where denotes the set of cases and denotes the setD C

of subsets of family members of size . The condi-FDF
tional likelihood does not depend upon the baseline risk
parameters and hence is valid even if the baseline differs
between (but not within) families. If cases and controls
are matched on age or other factors, the standard con-
ditional likelihood requires no assumptions about the
dependence of the baseline risk on these factors. Note
that without relying on auxiliary information from pop-
ulation rates, the standard conditional likelihood cannot
estimate absolute penetrance, only the genetic odds ratio,

.exp (b)
As Breslow and Day (1980, p. 248) note, the condi-

tional likelihood is both prospective and retrospective.

[P]recisely the same (conditional) likelihood is ob-
tained whether we regard the data as arising from
either (i) a prospective study of n individuals with a
given set of exposures), the conditioning event being
the observed number n1 of cases arising in the sample;
or (ii) a case-control study involving n1 cases and n0

controls, the conditioning event being the n observed
exposure histories.

That is,

F FPr (DFZ, D )=Pr (ZFD, {Z}) ,

where is the vector of observed exposures and {Z} isZ
the set of observed exposures. Because the conditioning
event on the right includes , this likelihood correctsD
for ascertainment in an “ascertainment assumption free”
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manner just as the retrospective likelihood does (see be-
low). The retrospective likelihood differs from the con-
ditional likelihood in that it does not condition on the
set of observed exposures (genotypes).

Prospective Likelihood

Suppose that, in sibships of size 2, the ascertainment
rule were that there be exactly one case and oneA
control. Then the ascertainment event isA {d � d =1 2

, which is identical to the conditioning event for the1}
conditional likelihood. However, for larger sibships, one
might consider a requirement that there be at least one
case and one control. The standard conditional likeli-
hood, equation (2) would then condition on the ob-
served number of cases, which is a stronger requirement
than necessary. One could, instead, consider what we
shall call the prospective likelihood of the form

where now in-L(a, b) = Pr (AFD) Pr (DFZ)/ Pr (AFZ) A
cludes all vectors that would qualify for ascertain-D
ment. For example, in sibships of size 3, there are six
possible events that would qualify for ascertainment in
such a case-control study, , (0, 1, 0)�, (0, 0,′D = (1, 0, 0)
1)�, (1, 1, 0)�, (1, 0, 1)�, or (0, 1, 1)�. Either the first
three or the second three would be used in the condi-
tional likelihood, depending upon whether one or two
cases were observed, whereas all six would be used in
the full prospective likelihood. This should lead to a
more efficient estimator of b. On the other hand, the
additional terms include entries that have a different
number of cases and controls from the numerator of the
likelihood, so that the baseline risk parameter a no
longer cancels out. It must therefore be estimated along
with b, which could lead to some loss of efficiency. We
provide some comparisons of the two likelihoods below.

Retrospective Likelihood

Prentice and Pyke (1979) introduced an alternative
retrospective likelihood based on . They showedPr (ZFD)
that this likelihood can be factored into two compo-
nents, this first identical to the standard prospective like-
lihood, and the second depending upon the distribution
of covariates. The maximization of the first component
led to the MLE of the entire likelihood, subject to a
constraint based on the marginal population disease rate
(integrating over the population distribution of covar-
iates). This approach is necessitated by the difficulty of
describing the population distribution of covariates in
most epidemiologic applications. However, in the ge-
netics context, there is a strong basis for modeling the
joint distribution of genotypes within families, so it be-
comes feasible to maximize the retrospective likelihood
directly. The advantage of this approach is that by con-
ditioning on the disease outcomes, one automatically

conditions on ascertainment, thereby making this ap-
proach relevant to case-control analyses conducted
within heavily loaded families for whom ascertainment
correction with the usual prospective likelihood would
be impossible. The disadvantage is, of course, that by
conditioning on all the phenotypes, rather than just the
ascertainment event, one may “overcondition,” thereby
perhaps leading to some loss of efficiency relative to the
analysis that would be possible if the ascertainment event
could be defined. In the numerical results which follow,
we show that this generally does not occur when the
parameter of interest is the genetic odds ratio. However,
the retrospective likelihood turns out not to be partic-
ularly efficient in estimating absolute penetrances.

A sibship’s contribution to the retrospective likelihood
looks like this:

L(a, b, q) = Pr (GFD)

Pr (DFG)Pr (G)
= ∗ ∗� Pr (DFG )Pr (G )∗G

�1[ ] [ ]� exp bZ(G ) � 1 �exp a � bZ(G ) p (G){ }j�D j j j q

= .∗ ∗ �1 ∗[ ] [ ]� � exp bZ(G ) � 1 �exp a � bZ(G ) p (G )∗ { }G j�D j j j q

The sum in the denominator is over all possible genotype
vectors for the sibship. The function , which is thep (G)q

probability of observing the genotypes , can be cal-G
culated by summing over (presumably) unknown pa-
rental genotypes, ,Gp

p (G) = Pr (GFG ) Pr (G ) ,�q p p
Gp

where the first term is a simple Mendelian transmission
probability, while the second term assumes Hardy-Wein-
berg equilibrium and depends on the population allele
frequency q. Thus, the retrospective likelihood is a func-
tion of a, b, and the allele frequency q. As with a, we
assume for this section and the next that q is constant
across families and investigate the effect of heterogeneity
in later sections.

The retrospective likelihood implicitly corrects for as-
certainment in this case. The explicitly ascertainment-
corrected retrospective likelihood, , reducesPr (GFD, A)
to

Pr (AFG, D) Pr (GFD)
= Pr (GFD) ,

Pr (AFD)

because is assumed to be independent of .A G
Note that, under this likelihood, sib-matched case-

control pairs can contribute information about a. This
may seem somewhat counterintuitive. Indeed, in the
limit of a rare disease (more precisely, that the pene-
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Table 1

Asymptotic Efficiency of the Prospective, Retrospective, and
Joint Likelihoods for Estimation of the Log Genetic Odds Ratio,
Relative to the Conditional Likelihood

MODEL AND

LIKELIHOOD

var0/vara

Genetic Odds
Ratio = 20

Genetic Odds
Ratio = 2

Sibship Size Sibship Size

2 3 4 2 3 4

q = .14 q = .44

Recessive model:
Prospective 1.00 2.11 2.32 1.00 1.18 1.26
Retrospective 2.68 2.66 2.53 1.08 1.23 1.29
Joint 2.68 2.74 2.64 1.08 1.50 1.48

q = .02 q = .19

Additive model:
Prospective 1.00 1.64 1.94 1.00 1.22 1.30
Retrospective 1.07 1.71 1.95 1.01 1.23 1.22
Joint 1.07 1.72 1.99 1.01 1.27 1.36

q = .01 q = .10

Dominant model:
Prospective 1.00 3.03 3.56 1.00 1.24 1.34
Retrospective 1.13 3.17 3.28 1.05 1.27 1.37
Joint 1.13 3.47 3.74 1.05 1.37 1.45

NOTE.—The population disease rate was fixed at 10%, and
allele frequencies were chosen so as to fix the proportion of cases
caused by the genetic factor.

a var = the asymptotic variance of the maximum-likelihood es-
timate for the log genetic odds ratio for the prospective, retro-
spective, or joint likelihood. var0 = the asymptotic variance of the
maximum-likelihood estimate for log genetic odds ratio for the
standard conditional likelihood.

trances for all genotypes are small), the likelihood con-
tribution for a given case-control pair simplifies to

[ ]exp bZ(G ) Pr (G)1

L(b, q) = ,∗ ∗[ ]� exp bZ(G ) Pr (G )∗G 1

which no longer depends upon a. When the disease is
not rare, however, the terms of the form 1 � exp [a �

from the denominator of the logistic penetrancebZ(G)]
function do not cancel out of the likelihood.

We show below that the retrospective likelihood can
be significantly more efficient than the standard condi-
tional likelihood in estimating the log genetic odds ratio
b. An intuitive explanation for the greater efficiency of
the retrospective likelihood is that because it does not
condition on the observed genotypes, it actually con-
ditions on less than the standard conditional likeli-
hood—even though the latter conditions on and notFDF

itself. This means that all case-control sets, includingD
those that are genotype concordant, are informative.

Joint Likelihood

Finally, we consider the ascertainment-corrected joint
likelihood

L(a, b, q) = Pr (D, GFA)

Pr (AFD) Pr (DFG) Pr (G)
= .∗ ∗ ∗ ∗� � Pr (AFD ) Pr (D FG ) Pr (G )∗ ∗D G

Here, the sum in the denominator is over all possible
genotypes and all phenotype vectors with at least one
case and one control. Like the prospective and retro-
spective likelihoods, the joint likelihood is a function of
all three parameters, but entails the weakest conditioning
of all, , rather than (for the prospectivePr (A) Pr (AFG)
likelihood) or for the retrospective likelihood, andPr (D)
thus should be more efficient than either.

Efficiency Comparisons

The asymptotic efficiency of one likelihood (call it )L1

relative to another ( ) for measuring a parameter v isL0

given by the ratio of the inverse asymptotic estimates
for the variance of :ˆ�n(v � v)

1/var var1 0ARE = = .
1/var var0 1

The asymptotic relative efficiency (ARE) can be inter-
preted as the ratio of the sample sizes needed for two
likelihoods to yield confidence intervals for v with the
same size. We computed the asymptotic variances for
the different likelihoods by calculating the inverse of the

expected information at the true parameters. The pop-
ulation disease rate was fixed at 10%, and the allele
frequencies were chosen so as to fix the proportion of
cases attributable to the at-risk genotype.

Table 1 presents the efficiencies of the prospective,
retrospective, and joint likelihoods relative to the con-
ditional likelihood for estimating the log genetic odds
ratio. The prospective, retrospective, and joint likeli-
hoods are always more efficient than (or as efficient as)
the standard conditional likelihood for estimating the
genetic odds ratio. The joint likelihood is always the
most efficient. When the disease gene is dominant and
the genetic odds ratio is large, sibships of size three and
four are more than three times as efficient when ana-
lyzed by the new likelihoods. The efficiency gains over
the conditional likelihood are generally smaller when
the disease gene is not dominant, when the genetic odds
ratio is smaller or when the sibship size decreases.

All other things being fixed, the qualitative relation-
ship between the efficiencies of the four likelihoods fol-
lows the intuition that the less we condition on, the
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Table 2

Efficiency of the Prospective and Retrospective for Estimating
the Absolute Penetrance in Carriers, Relative to the Joint
Likelihood

MODEL AND

LIKELIHOOD

var0/vara

Genetic Odds
Ratio = 20

Genetic Odds
Ratio = 2

Sibship Size Sibship Size

2 3 4 2 3 4

q = .14 q = .44

Recessive model:
Prospective NAb .83 .91 NAb .95 .96
Retrospective 1.00 .51 .49 1.00 .016 .016

q = .02 q = .19

Additive model:
Prospective NAb .96 .98 NAb .99 .98
Retrospective 1.00 .11 .12 1.00 .003 .003

q = .01 q = .10

Dominant model:
Prospective NAb .90 .97 NAb .98 .98
Retrospective 1.00 .24 .22 1.00 .010 .010

NOTE.—The population disease rate was fixed at 10%, and
allele frequencies were chosen so as to fix the proportion of
cases caused by the genetic factor.

a var = the asymptotic variance of the maximum-likelihood
estimate for the log genetic odds ratio for the prospective, ret-
rospective, or joint likelihood. var0 = the asymptotic variance of
the maximum-likelihood estimate for log genetic odds ratio for
the standard conditional likelihood.

b For sibships of size two, the prospective likelihood is iden-
tical to the standard conditional likelihood, and hence cannot
estimate absolute penetrances.

more efficient a likelihood will be. The event which the
conditional likelihood conditions on contains the con-
ditioning events for the retrospective, prospective, and
joint likelihoods—hence, the conditional likelihood is
the least efficient. The event which the joint likelihood
conditions on is contained by the conditioning events
for the other likelihoods—hence, the joint likelihood is
the most efficient. The conditioning events for the pro-
spective and retrospective likelihoods overlap but are
not nested. In some conditions, the prospective is more
efficient; in others, the retrospective is more efficient.
The size of the efficiency differences depends on the
genetic odds ratio, the mode of inheritance, sibship size,
baseline rates, and allele frequencies in a complex
manner.

Table 2 presents the efficiencies of the prospective and
retrospective likelihoods for estimating absolute pene-
trance in carriers relative to the joint likelihood (recall
that the conditional likelihood cannot estimate absolute
penetrances). The retrospective likelihood was consid-
erably less efficient than the prospective and joint like-
lihoods for estimating the penetrance in carriers (be-
cause it is highly inefficient in estimating penetrance in
noncarriers and the correlation between and isˆ ˆf f0 1

large). This is consistent with the findings of Liang et
al. (1996) on the inefficiency of MOD score analysis
relative to a full (joint) likelihood when estimating ab-
solute penetrances using linked markers instead of mea-
sured genotypes.

In the case of a rare disease allele, the sample sizes
needed to obtain reasonable resolution for estimating
penetrance with case-control sib pairs can be prohibi-
tive. For example, for a dominant allele with frequency
.0033 and true penetrances .92 and .10 in carriers and
noncarriers, respectively, the retrospective and joint
likelihoods require over 15,000 case-control pairs to
estimate the penetrance in carriers roughly �.10 with
95% confidence (not shown). However, these sample-
size requirements decrease dramatically for sibships of
size three; only 341 such sibships are needed for the
joint likelihood to give the same resolution, whereas
896 are needed for the retrospective likelihood. This
drop reflects the fact that case-control pairs contain very
little information on allele-frequency and baseline-odds
parameters; sib trios evidently have considerably more.
The sample sizes needed to ensure that the estimated
odds ratio is 120 with 95% probability in this case are
also much smaller; about 1,200 sibships of size two for
all three likelihoods are needed, and between 100 and
130 sibships of size three.

Multiple-Case Families

As mentioned in the introduction, restricting sampled
families to those with multiple cases can increase effi-

ciency for estimating the genetic odds ratio, since those
families are more likely to carry the disease gene. Con-
sider a design where we require each sibship to have at
least two cases and at least one control. Under the as-
sumptions that the population rate is 10%, the genetic
odds ratio is 20, and the allele frequency is 1%, then,
under this design, a sibship of size four, analyzed with
the conditional likelihood, can be 3.5 times more effi-
cient for estimating the odds ratio than can a sibship of
size four under the restriction of at least one case and
one control. Under the same parameter assumptions, but
using the retrospective likelihood, sibships of size four
with at least two cases are about 2.2 times as efficient
as sibships of the same size with at least one case. The
retrospective likelihood is still 3.0 times more efficient
than the conditional likelihood under this more restric-
tive design. Another design which leads to greater effi-
ciency gains is requiring that sampled sibships’ parents
be affected.

While these multiple-case designs may increase the ef-
ficiency for estimating the genetic odds ratio, they may
decrease the efficiency for estimating baseline odds and
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allele frequencies, thus making it more difficult to esti-
mate absolute penetrance. They may also be more sus-
ceptible to population stratification bias. We are cur-
rently studying these designs and their analysis and will
discuss their potential advantages and disadvantages in
more detail in a later paper.

Bias in the Case of Heterogeneity in Baseline Risks
and Allele Frequencies

The likelihoods and calculations presented in the pre-
vious two sections assumed that the baseline risks and
allele frequencies were homogeneous. Two kinds of re-
sidual familiality could violate this assumption. First,
there may be dependencies in disease risks between fam-
ily members caused by shared unmeasured risk factors
(either genetic or environmental). Such dependencies
could be complex, but, in the absence of specific knowl-
edge of their source, one might simply consider each
family to be a homogeneous unit with the same, un-
known baseline risk parameter. Second, families may
derive from a heterogeneous population with strata that
have different allele frequencies. Neither of these types
of heterogeneity poses any problem for the conditional
likelihood, because all comparisons are made within
families and the likelihood is not a function of either
baseline risks or population allele frequencies. However,
they pose a greater problem for the prospective, retro-
spective, and joint likelihoods.

We assume that the genetic effect itself (i.e., b) is
constant. If b varies between families, then estimates
based on a homogeneous b will estimate some form of
weighted average of the family-specific bs. We do not
consider this situation further here, on the grounds that
if there is really heterogeneity in b, then we really need
to measure its distribution and not just an average or
median b. Similarly, we do not consider estimations of
penetrance in this section or the next, because if there
is heterogeneity in baseline odds ratios, then there will
necessarily be heterogeneity in penetrance. Our main
interest in these sections is estimating the log odds ratio,
b.

The retrospective likelihood is a function of a only
when the denominator of the logistic function is sub-
stantially different from 1. Thus, it follows that the first
type of heterogeneity can be ignored for “rare” diseases.
Note, however, the condition of rarity is somewhat
more stringent than is usually assumed; not only must
the disease rate be low in the general population and,
particularly, in gene carriers, but it must also be low in
all families. (Here, by “disease rate” we mean the true
underlying risk for a family, not the observed rate,
which could be high by chance).

In order to investigate the bias introduced by heter-
ogeneity in baseline risks and allele frequencies, we fit

a homogeneous model to data simulated under a het-
erogeneous model. We assumed that the family-specific
a and q were dichotomous random variables which
took the values and . The joint proba-a � a q � q1 0 1 0

bility for a family’s , , a, and q values was thus:D G

Pr (DFG, a) Pr (GFq) Pr (aFq) Pr (q) . (3)

The term allowed us to model dependence be-Pr (aFq)
tween a and q. This could arise, for example, if a sub-
population with a high allele frequency also had greater
exposure to an environmental risk factor, or if a sub-
population which tended to carry the putative high-risk
allele at the observed locus also tended to carry a high-
risk allele at an unobserved locus.

We assumed logistic models for andPr (DFG, a)
, namely andPr (a = a Fq) logit Pr (DFG, a) = a � bZ(G)1

. Here h defines the re-logit Pr (a = a Fq) = d � hI(q = q )1 1

lationship between the baseline rate and the allele fre-
quency. A positive h indicates that families with the high
allele frequency tend to also have a high baseline disease
rate, while a negative h indicates that the trend is re-
versed. Of course, indicates that a and q areh = 0
independent.

When simulating data sets we chose the true param-
eters so that (1) the population rate was 10%, (2) the
proportion of families with was 25%, (3) thea = a1

two allele frequencies were equally probable (Pr (q =
), (4) the mode of inheritance was dominant,q ) = 0.51

and (5) the average allele frequency was .05. We set the
conditional genetic odds ratio at either exp (b) = 20
(high genetic relative risk) or (moderate ge-exp (b) = 2
netic relative risk). We then varied and theDa = a � a1 0

odds ratio of the allele frequencies for the two strata,
in order to see how relativev = q (1 � q )/ [q (1 � q )] ,q 1 0 0 1

differences in baseline rates and allele frequencies af-
fected the performance of the homogeneous likelihoods.
We also varied h, to see how dependence between a and
q affected the results. Note that population stratification
only produces confounding in the usual sense if a (1

, and .a q ( q h ( 00 1 0

We calculated the average bias in the maximum like-
lihood estimate by simulating 100 studies of 2,000b̂

sibships of size four and then averaging the difference
. Maximum likelihood estimates for a, b, and qb̂ � b

were found using Newton-Raphson iteration. Figures 1
and 2 plot the average bias as a function of the differ-
ence in baseline odds parameters Da, given the genetic
odds ratio, the degree of heterogeneity in q, and whether
the baseline odds and allele frequencies are indepen-
dently distributed. In figure 1, there is no genetic effect
(the true ). In figures 2 and 3, .b = 0 b = log 20

Figure 1A shows that, even when there is heteroge-
neity in both a and q, the maximum-likelihood estimate
for b for all three likelihoods is not biased, as long as
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Figure 1 Bias in maximum-likelihood estimates of the log odds
ratio when the true odds ratio is 1 as a function of the difference in
baseline log odds, Da (heterogeneity in allele frequencies fixed, v =q

). a, Baseline odds and allele frequencies independent ( ). b,10 h = 0
Baseline odds and allele frequencies correlated (h = log 10).

Figure 2 Bias in maximum-likelihood estimates of the log odds
ratio when the true odds ratio is 20 when there is heterogeneity in
either baseline odds alone or allele frequencies alone. a, Bias as a
function of heterogeneity in q ( ). b, Bias as av = q (1 � q )/q (1 � q)1 0 0

function of the difference in log baseline odds, Da.

a and q are independent. However, as soon as a and q
are correlated, all three likelihoods are biased away
from the true value, . When the correlation be-b = 0
tween baseline odds and allele frequencies is positive
(that is, families with high allele frequencies also have
high baseline odds as in Figure 1B), then the bias is
positive. The largest induced effect in figure 1B (which
occurs when ) corresponds to an apparentDa = log 10
odds ratio of 1.13. If the correlation between baseline
odds and allele frequencies is negative, the bias is
negative (not shown). The case where a and q are corre-
lated corresponds to confounding due to population
stratification.

When there is a genetic effect (Figures 2 and 3), het-
erogeneity in either a or q can lead to bias towards the
null, even when these parameters are marginally un-
correlated. The exception is that when there is no het-
erogeneity in a (figure 2A), the prospective likelihood
is not biased (the retrospective and joint likelihoods

are). This is because the prospective likelihood does not
depend on q and therefore is not affected by hetero-
geneity in this parameter. Figure 3A shows the bias in
the log genetic odds ratio when there is heterogeneity
in both a and q, under the assumption that the two are
independent. In this case, greater heterogeneity in a

(that is, the larger the difference ) impliesDa = a � a1 0

greater bias in all three likelihoods.
The bias is not as strong when a and q are positively

correlated (fig. 3B). On the other hand, when allele fre-
quencies and baseline odds are negatively correlated,
the bias towards is stronger than when there isb = 0
no correlation (fig. 3B). Two forms of bias are at work
here—one, arising from confounding due to population
stratification, that overestimates b, and another, arising
from the fact that heterogeneity in baseline odds and
allele frequencies is ignored, that underestimates b.

Although heterogeneity in either allele frequencies or
baseline odds will cause the homogeneous likelihood to
be biased, the bias may be negligible if the variation in
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Figure 3 Bias in maximum-likelihood estimates of the log odds
ratio when the true odds ratio is 20 as a function of the difference in
baseline log odds, Da (heterogeneity in allele frequencies fixed, v =q

. a, Baseline odds and allele frequencies independent ( ). b, Base-10 h = 0
line odds and allele frequencies positively correlated (h = log 10; cor-
relation = .52). c, Baseline odds and allele frequencies negatively cor-
related (h = log 10; correlation = �.52).

those parameters is not extreme . For example, when
, moderate values of Da or vq ( orb = log 20 Da � log 2

) produce a small bias, on the order of 1%–2%.v � 2q

Mixed Models for Heterogeneity

If one were to attempt to estimate a separate or fora qi i

each family, the number of these parameters would grow
with sample size, leading to problems with asymptotics.
Instead, we postulate a random-effects model for the

and . Let a and q have the joint distributiona qi i

across families. Then the marginal joint proba-f (a, q)v

bility has the formPr (D, G)

Pr (DFG, a) Pr (GFq)f (a, q) da dq .� v

a,q

So the retrospective likelihood, for example, under this
mixed model, looks like

Pr (DFG, a) Pr (GFq)f (a, q) da dq∫a,q v
. (4)∗ ∗� Pr (DFG , a) Pr (G Fq)f (a, q) da dq∗ ∫G a,q v

In principle, maximum-likelihood estimates for b and v

based on (4) can be calculated using the Newton-Raph-
son algorithm and numerical integration. In practice,
this will often be very difficult to implement. However,
if a and q are assumed to be discrete, then the integrals
in (4) become sums, and calculation of maximum-like-
lihood estimates becomes more tractable. On the other
hand, discrete distributions may require more parame-
ters than continuous distributions.

In order to investigate the feasibility and efficiency of
the mixed-model likelihoods, we examined the pro-
spective, retrospective, and joint likelihoods based on
the mixed model (3) presented in the previous section.
These likelihoods have the form:

� � Pr (DFG, a) Pr (GFq) Pr (aFq) Pr (q)a q
, (5)∗ ∗ ∗� � � Pr (D FG , a) Pr (G Fq) Pr (aFq) Pr (q)C a q

where C is the appropriate conditioning event. Assum-
ing that the true distribution of , , and the unob-D G
served a and q has the form of (3), the prospective,
retrospective, and joint likelihoods all have an expected
score of zero at the true parameter values. It follows
that maximum-likelihood estimates based on (5) will be
consistent. Note that if a and q are not independent,
then the prospective likelihood also involves the Pr(q)
terms; when a and q are independent, the terms in-
volving the allele frequency drop out.

Table 3 shows the relative efficiencies of the mixed-
model likelihoods. These were based on direct calcu-
lations of the expected information evaluated at the true
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Table 3

Efficiency of the Standard Conditional and Mixed-Model Prospective and
Retrospective Likelihoods Relative to the Mixed-Model Joint Likelihood

CONDITIONS

LIKELIHOOD

Conditional Prospective Retrospective

Heterogeneity in q Alonea

Genetic odds ratio = 20 .43 1.01 .95
Genetic odds ratio = 2 .66 1.00 .92

Heterogeneity in a Aloneb

Genetic odds ratio = 20 .98 .83 .99
Genetic odds ratio = 2 .83 .78 .81

Heterogeneity in Both a and qc

Genetic odds ratio = 20:
a and q independent .92 .99 .99
a and q positively correlated .89 .99 .99
a and q negatively correlated .94 1.00 .98

Genetic odds ratio = 2:
a and q independent .93 .96 .93
a and q positively correlated .90 .96 .95
a and q negatively correlated .92 .93 .92

a ; ; population rate ; .Da = 2.30 Pr (a = a ) = 0.25 = 0.10 q = 0.051
b ; ; ; population rate .q = 0.0098 q = 0.0902 Pr (q = q ) = 0.50 = 0.100 1 1
c ; ; ; ; ;q = 0.0098 q = 0.0902 Pr (q = q ) = 0.50 Da = 2.30 Pr (a = a ) = 0.250 1 1 1

population rate = .10. For the independent case, ; for the positive cor-h = 0.00
relation case, ; and for the negative correlation case, .h = 2.30 h = �2.30

parameters. For the cases of heterogeneity in a or q
alone, a reduced mixed model—which only modeled
heterogeneity in the appropriate parameter—was used.
So, for example, while the mixed-model retrospective
likelihood involved eight parameters in the case of het-
erogeneity in a and q, it only involved five in the cases
of heterogeneity in a alone or heterogeneity in q alone.

In practice, we might try to fit a model with heter-
ogeneity in both a and q to data from a distribution
which is heterogeneous in only one (or neither) factor.
In this case, the expected information at the true pa-
rameters for the fully heterogeneous likelihood is sin-
gular, so there may be problems with the convergence
of estimates.

The efficiency of standard conditional likelihood is
not markedly worse than that of the mixed joint like-
lihood, except in the case of heterogeneity in q alone.
The prospective and retrospective likelihoods per-
formed about as well as the joint likelihood for all the
cases considered here. In fact, the prospective likelihood
was slightly more efficient than the joint likelihood in
the case of heterogeneity in q alone. This was possible
because the prospective likelihood only involved two
parameters, whereas the joint likelihood involved five
(in fact, in the absence of heterogeneity in a, the ho-
mogeneous prospective likelihood gives consistent pa-
rameter estimates).

The asymptotic variances for the estimates of the nui-
sance parameters describing the distribution of a and
q were often very large. For example, when the genetic
odds ratio was 2, the joint-likelihood estimates for a0

and Da were 11,000 times less efficient than the esti-
mates for b. For larger genetic odds ratios, the estimates
for a and a0 were considerably more efficient, but the
estimates for q0 and q1 remained relatively inefficient
(data not shown). However, the inefficiency in the es-
timates of the nuisance parameters does not effect the
consistency or efficiency of the estimate for the log odds
ratio discussed above.

Discussion

The calculations reported in this paper suggest that the
prospective, joint, and retrospective likelihoods will gen-
erally be more efficient than the standard conditional
likelihood for analyzing family-based studies of candi-
date genes in the case of homogeneous baseline rates
and allele frequencies. The advantages and drawbacks
of these likelihoods examined are summarized in table
4.

In particular, the retrospective likelihood avoids the
difficulties of modeling ascertainment correction when
the families are not obtained in a population-based
manner—as long as ascertainment only depends on a
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Table 4

Summary of the Properties of the Four Likelihoods

Likelihood Drawbacks Advantages

Standard conditional Disease (and genotype) concordant sets noninformative.
Only yields information on genetic odds ratio, not absolute
penetrance.

Not affected by heterogeneity in q. Do not
have to explicitly model ascertainment.

Prospective Must explicitly model ascertainment rule. Sensitive to heterogeneity in
baseline rates.

Not affected by heterogeneity in q. Can
be more efficient than standard condi-
tional likelihood. Yields information on
both relative risk and baseline rates.

Retrospective Sensitive to heterogeneity in baseline rates and allele frequencies. Low
power for estimating absolute penetrances.

Do not have to explicitly model ascertain-
ment rule. More efficient than standard
conditional and prospective likelihood
for estimating relative risk.

Joint Must explicitly model ascertainment rule. Sensitive to heterogeneity in
baseline rates and allele frequencies.

Most efficient of all.

sibship’s phenotypes. Some recent linkage studies (e.g.,
Easton et al. 1995) analyzed families with four or more
cases and a high LOD score using MOD-score tech-
niques (the linkage analog to the retrospective likeli-
hood). In this case, the MOD-score/retrospective like-
lihood does not correct for ascertainment, because
ascertainment depends on the joint distribution of phe-
notypes and genotypes (through the LOD-score require-
ment). MOD-score analysis of sibships sampled on the
basis of high LOD scores substantially overestimates the
penetrance in carriers (Siegmund et al. 1999).

Several other cautionary remarks are in order. First,
if there is between-family heterogeneity in baseline rates,
then a likelihood that assumes a homogeneous baseline
rate may provide a biased estimate of the genetic odds
ratio. Similarly, heterogeneity in allele frequencies can
lead to bias in parameter estimates based on the ho-
mogeneous model. This is not a novel result; there is
no reason to expect that a maximum-likelihood esti-
mate, , should converge to the true b in the presenceb̂

of an omitted covariate which is related to disease (such
as when there is heterogeneity in a). For example, in
the case of unconditional logistic regression with an
individual-specific covariate X that is marginally inde-
pendent of a measured dichotomous exposure Z, con-b̂

verges to

E Pr (D = 1FX, Z = 1)E Pr (D = 0FX, Z = 0)X X
b̃ = log ,

E Pr (D = 0FX, Z = 1)E Pr (D = 1FX, Z = 0)X X

an odds ratio based on the marginal probability
(Gail 1984; Greenland 1987). Because of this,Pr (DFZ)

will be biased towards the null even when X and Zb̂

are independent (Hauck 1991). In the case of hetero-
geneity in family-specific baseline odds, for the fourb̂

conditional likelihoods discussed here does not, in gen-
eral, converge to the analogous value

b̃ =

[ ] [ ]� Pr D = 1Fa, Z(G) = 1 p (a)� Pr D = 0Fa, Z(G) = 0 p (a)a 1 a 0

log ,
[ ] [ ]� Pr D = 0Fa, Z(G) = 1 p (a)� Pr D = 1Fa, Z(G) = 0 p (a)a 1 a 0

where . In fact, when there is het-p(a) = Pr [aFZ(G) = i]i

erogeneity in a and a and q are independent, is furtherb̂

biased towards the null, that is, .˜ ˆb � b � b � 0
We should note here that the estimate , which isb̂

based on the log-linear model Pr (DFG) = exp [a �
, will converge to the true b even in the case ofbZ(G)]

heterogeneity in a and q—as long as a and q are in-
dependent. The estimate still will not converge to bb̂

when a and q are correlated (confounding caused by
population stratification). The main drawback to the
log-linear model is computational; the maximum-like-
lihood estimates must be constrained so that ˆexp [a �

.b̂Z(G)] � 1
The gist of the two preceding paragraphs is that care

must be taken when interpreting the estimated odds
ratio in the presence of heterogeneity. Thisˆexp (b)
quasimarginal odds ratio may not be of primary im-
portance. If investigators are mostly interested in de-
termining whether a major gene plays a role in increas-
ing risk in individuals and are less interested in how
this increase in risk plays out in a large population, then
the conditional genetic odds ratio b is more relevant
than the marginal odds ratio (Greenland 1987; Green-b̃

land 1999).
Random-effects (mixed) models can correctly esti-

mate b in the presence of between-family heterogeneity
while avoiding proliferation of family-specific param-
eters. The mixed-model joint likelihood can even be
more efficient than the conditional likelihood, and other
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parameters can be estimated by use of the mixed-model
likelihoods, but not by use of the standard conditional
likelihood. However, the efficiency gains over the stan-
dard conditional likelihood were negligible in the cases
we examined, and the asymptotic variances for nuisance
parameters (like allele frequencies) were large.

The dichotomous random-effects models for hetero-
geneity in baseline odds and allele frequencies presented
in this paper may differ markedly from the real variation
in those parameters. However, unless we have evidence
that there is no heterogeneity or that the heterogeneity
is small enough to have little effect, it may be better to
use a misspecified model that takes some form of het-
erogeneity into account than to fit a model which ig-
nores it completely. In principle, a random-effects model
allows us to test for the presence of heterogeneity in
baseline odds and/or allele frequencies. If there is no
evidence of heterogeneity, then a homogeneous likeli-
hood can be used. If there is evidence of heterogeneity
in one or both factors, investigators can fit a random-
effects model, which need not take a dichotomous
form—investigators can also use multipoint discrete or
continuous models, or they can estimate the random-
effect distribution nonparametrically (Laird 1978). The
properties of this two-step approach (such as test size
and power) as well as the properties of more sophisti-
cated random-effects models are subjects for future
research.

Second, the likelihoods presented here assume that
the baseline risk within a family is characterized by a
single parameter a. In most chronic diseases, the base-
line risk varies in a complex manner with age, gender,
race, calendar time, and (perhaps) other factors. A ma-
jor advantage of the conditional likelihood for case-
control data is that all such dependencies are eliminated
by appropriately matching on such factors in the selec-
tion of controls (Lubin and Gail 1985). Practical ap-
plications of the other likelihoods would therefore re-
quire one to model such effects. It is unclear whether
their efficiency gain, relative to the prospective likeli-
hood, would be as impressive, once the need for many
such additional parameters was allowed for.

The methods presented here can be extended to in-
clude failure-time models, which can take the variation
in baseline risk with age into account. For example, the
ARCAD (analysis of risk corrected for ascertainment
and using age at diagnosis) of Le Bihan et al. (1995) is
essentially what we called the “joint” likelihood ex-
tended to the context of failure-time analysis (they also
allow for non–nuclear family data and subjects with
missing genotypes). For the retrospective likelihood, if
we assume (a) that the hazard rate for an individual has
some parametric form , (b) that censoring timel(t, G)
is independent of genotype, and (c) that the censoring

times for individuals in a sibship are independent, then
we can write as follows:Pr (GFD, t)

tiD � ∫ l(s,G )dst 0i i i0�l(t , G ) e Pr (G)i i
i .ti ∗∗ D � ∫ l(s,G )ds ∗i i0� �l(t , G ) e Pr (G )∗G i i

i

Under assumptions (b) and (c), the censoring process
cancels out of this fraction. The hazard can bel(t , G )i i

modeled parametrically or semiparametrically (e.g., as-
suming proportional hazards and using a step function
for ). We are currently investigating the propertiesl(t)
of prospective, retrospective, and joint likelihoods based
on failure-time models. We are particularly interested
in the feasibility of using frailty models to account for
differences in baseline rates.

Finally, within-family dependencies may be more
complicated than the model presented above, where
families share an unobserved baseline risk. Such residual
within-family dependencies can arise because of other
genes (major genes or polygenes) or because of unmo-
deled environmental factors. When these factors are cor-
related with the candidate gene, ignoring them can lead
to biased estimates of the parameters of the model using
any of the proposed likelihoods. For example, if the
candidate gene is inert but is in linkage disequilibrium
with a causal gene, then (a) it will appear to be related
to disease and (b) the assumption that the phenotypes
of siblings are independent given their (observed) gen-
otypes will be violated. Point (a) changes our interpre-
tation of the results, and point (b) implies that tests of

will have the wrong size. On the other hand, ifb = 0
the unmeasured risk factor is independent of genotype
given disease status, then ignoring the risk factor will
not induce a bias (Whittemore 1978). We are investi-
gating further the effect of other unmeasured risk fac-
tors on the estimates for the odds ratio or relative risk
and the parameter-variance estimates. In particular, if
one family member’s phenotype has a direct causal in-
fluence on another’s, then regressive models may ac-
count for this influence (Bonney 1986).
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